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Abstract For a chemical reaction network, persistence is the property that no species
tend to extinction if all species are initially present. We investigate the stronger prop-
erty of vacuous persistence: the same asymptotic feature with a weaker requirement
on initial states, namely that all species be implicitly present. By implicitly present, we
mean for instance that if only water is present and the reaction network incorporates
the information that water is made of hydrogen and oxygen, then hydrogen and oxygen
are implicitly present. Persistence is inherently interesting and has implications for the
global asymptotic stability of equilibrium states. Our main tools are the work of A. I.
Vol’pert on the nullity and positivity of species concentrations, and the enabling notion
of reachability. The main result states that a reaction network is vacuously persistent
if and only if the set of all species is the only set of species that both is closed with
respect to reachability and causes the implicit presence of all species. This paper is the
first in a series of three articles. Two sequel papers introduce additional formalisms
and use them to describe two large classes of reaction networks that are used as models
in biochemistry and are vacuously persistent.
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1 Introduction

A trajectory R≥0 → R
n≥0 is persistent if it has no ω-limit points on the boundary

∂R
n≥0 = R

n≥0 \ R
n
>0. This means that each of the n trajectory components R≥0 → R≥0

does not approach zero as time tends to infinity continuously or discretely. Many
dynamical systems, including those that model mass-action reaction networks, are
positive: solution trajectories originating in R

n≥0 range in R
n≥0. Such a system is per-

sistent if all solution trajectories originating in R
n
>0 are persistent. A reaction network

is said to be persistent if its dynamical system is persistent.
Persistence is inherently interesting because it is concerned with the possibility of

species extinction. Furthermore, for certain reaction networks, persistence implies the
global asymptotic stability of positive equilibrium states; see e.g. Feinberg [6, Remark
6.1.E] and Siegel and MacLean [16, Theorem 3.2]. Two results of Angeli, De Leenheer
and Sontag [4] provide insight into the persistence of conservative reaction networks
with reasonable kinetics. Theorem 1 in this reference says that if such a network is
persistent, then a fairly broad reversibility condition holds, namely the reaction vectors
are positively dependent, i.e. there exists a vanishing linear combination of the reaction
vectors in which all coefficients are positive. Theorem 2 in the same reference says that
such a network is persistent provided every nonempty siphon contains the support of
a nonzero nonnegative conserved vector of species. Shiu and Sturmfels [14, Theorem
3.5] established an equivalent algebraic formulation of this sufficient condition.

One might want to ascertain the non-extinction (i.e. the persistence) of not just
the species that are initially present, but also of those that appear after initial time.
This would be the case for instance in a biochemical experimental setting in which
only building blocks are initially present. We address this concern here by studying
vacuous persistence, a stronger form of persistence that covers such circumstances.
Vacuous persistence is the property that trajectories are persistent provided all species
are implicitly present at the initial state, or in the terminology of this paper, provided
the species that are initially present form a stoichiometrically admissible set. In the
parlance of Chemical Reaction Network Theory, this (weaker) requirement on the
initial state is for it to be stoichiometrically compatible with a positive state. The “vac-
uous” attribute is to indicate that, in a sense made more specific in the paper, vacuous
persistence is persistence together with the absence of opportunities for non-persis-
tence. Our approach is largely based on the concept of reachability and results on the
nullity and positivity of trajectory components developed by A. I. Vol’pert [22]. A set
of species will be said to be reach-closed if it already contains all the species that can
be produced from it. The following theorem is the main result of this paper.

Theorem 1.1 (Theorem 5.5) Consider a mass-action reaction network for which all
concentration trajectories are bounded. The following are equivalent:

• The reaction network is vacuously persistent.
• Among the subsets of the set S of all species, only the full set S is both reach-

closed and stoichiometrically admissible. ��
Propositions 3.3 and 3.4 show that the use of siphons in Angeli, De Leenheer

and Sontag [4] and of reachability here are somewhat dual. The real value of this
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theorem lies in that the approach it offers enables us to establish vacuous persistence
for networks in two large classes relevant in biochemistry. These are described in the
sequel papers Gnacadja [7,8].

Following is the organization of the paper. We assemble basic notions of Chemi-
cal Reaction Network Theory in Sect. 2; most are from common literature but some
are particular to our needs. We discuss reachability in reaction networks in Sect.
3. Section 4 presents the Theorem of A. I. Vol’pert on the positivity and nullity of
species concentrations, as well as certain immediate consequences. Finally, we intro-
duce and characterize vacuous persistence in Sect. 5. We prove Vol’pert’s theorem in
“Appendix” section. The proof is a specialized form of the much more general work
of Vol’pert and should be informative to readers unfamiliar with this interesting piece
of mathematics.

2 Reaction networks

We gather certain basic notions of Chemical Reaction Network Theory. Most can be
found in the lecture notes of Feinberg [5] and the more recent tutorial of Gunawardena
[9].

2.1 Structure of reaction networks

A system of chemical reactions is usually presented as a diagram that shows the inter-
actions of chemical species; see for instance Fig. 1. Following is a rendition of the
formal definition that enables mathematical investigations.

Definition 2.1 A reaction network is a triple N = (S ,C ,R) where

• S , the set of species, is a nonempty finite set;
• C , the set of complexes, is a nonempty finite subset of the nonnegative orthant

Z≥0S of ZS ; and
• R, the set of reactions, is a relation on C , i.e. a subset of the Cartesian square

C × C . ��

(a) (b)

Fig. 1 Examples of chemical reaction networks. (a) The allosteric ternary complex model of pharmacol-
ogy. The interaction is allosteric, i.e. not orthosteric, because the receptor R has different binding sites for
the ligands A and B. (b) Two enzymes E and F catalyzing the interconversion of two substrates A and B.
This is a futile cycle because each enzyme reverses the action of the other.
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In this definition and throughout the paper, ZS denotes the set of formal linear
combinations of S with integer coefficients, equipped naturally with linear opera-
tions. (In precise algebraic terms, ZS is the free Z-module over S , almost a vector
space with integer scalars and basis S .) Similarly, RS denotes the real vector space
with basis S . It also denotes the canonically isomorphic vector space of tuples of real
entries indexed by S . The notation R≥0S (respectively R>0S ) is for the nonnega-
tive orthant (respectively the positive orthant); it consists of the linear combinations or
the tuples in which all coefficients or entries are nonnegative (respectively positive).
The space RS is equipped with the Euclidean structure with respect to which S is
an orthonormal basis.

Consistently with customary chemical notation, a reaction R = (Q′, Q′′) is also
denoted Q′ → Q′′. The complexes src(R) := Q′ and tgt(R) := Q′′ are respectively
the source and the target of the reaction R, and we say that Q′ reacts to Q′′. The
vector tgt(R) − src(R) ∈ ZS is the reaction vector of R. We set

src(R) := Supp
(
src(R)

)
and tgt(R) := Supp

(
tgt(R)

)
.

For illustration, the network of Fig. 1a has six species: R, A, B, R A, RB and
R AB; seven complexes: R + A, R A, R + B, RB, RB + A, R A + B and R AB; and
eight reactions. The network of Fig. 1b has six species: E , F , A, B, E A and F B; six
complexes: E + A, E A, E + B, F + B, F B and F + A; and six reactions.

We augment Definition 2.1 with the following customary restrictions:

(i) Every species is in the support of at least one complex;
(ii) No complex reacts to itself; and

(iii) Every complex is the source or the target of at least one reaction.

The reaction graph of the reaction network N = (S ,C ,R) is the directed graph
(C ,R); the complexes are the vertices and the reactions are the directed edges. Given
complexes Q′, Q′′ ∈ C , we say that Q′ ultimately reacts to Q′′ if there is a path from
Q′ to Q′′ in the reaction graph. The connected components of the associated undirected
graph are the linkage classes of the network N . The network is weakly reversible if
every path in the reaction graph has a reverse path, i.e. if whenever Q′ ultimately reacts
to Q′′, it also holds that Q′′ ultimately reacts to Q′. The network is reversible if the
reaction graph is reversible.

The network of Fig. 1a is an example of a reversible network. Reversibility and
weak reversibility are the two well-established notions of reversibility in Chemical
Reaction Network Theory. However they do not reflect certain forms of biochemical
reversibility, of which the futile enzymatic cycle of Fig. 1b is an example. In the sequel
paper Gnacadja [7], we propose another notion of reversibility which applies to such
contexts.

2.2 Stoichiometric compatibility

The stoichiometric space of N is the subspace S of RS spanned by the reaction
vectors. The rank of N is the dimension of S.
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Two elements v,w ∈ R≥0S are said to be stoichiometrically compatible if
v − w ∈ S. This defines an equivalence relation on R≥0S , the equivalence classes of
which are the stoichiometric compatibility classes. The stoichiometric compatibility
class of u ∈ R≥0S is

P = (u + S) ∩ R≥0S .

We have

P = P>0 � P	>0 ,

where

P>0 = (u + S) ∩ R>0S and P	>0 = (u + S) ∩ ((
R≥0S

) \ (
R>0S

))
.

The sets P>0 and P	>0 consist respectively of the positive and the nonpositive elements
of P . They are respectively the interior and the boundary of P , both relative to the
affine space u + S. We will say that the class P is degenerate if its interior P>0 is
empty (P>0 = ∅), or equivalently if it coincides with its boundary P	>0 (P = P	>0).

Definition 2.2 Let Z ⊆ S . The set Z is P-admissible, where P is a stoichiometric
compatibility class, if there exists u ∈ P such that Z = Supp(u). The set Z is stoi-
chiometrically admissible if it is P-admissible for some nondegenerate stoichiometric
compatibility class P , i.e. if Z = Supp(u) for some nonnegative u ∈ R≥0S which
is stoichiometrically compatible with some positive v ∈ R>0S . ��

Consider for illustration, the network of Fig. 1b. It has rank three; the three vectors
E A − E − A, F B − F − B, A − B form a basis of its stoichiometric space. Each
stoichiometric compatibility class is characterized by a triplet (TE , TF , TAB) of non-
negative reals, in that the class consists of the 6-tuples (uE , uF , u A, u B , uE A, uF B)

of nonnegative reals which satisfy the equations

uE + uE A = TE , uF + uF B = TF , u A + u B + uE A + uF B = TAB .

The class is nondegenerate if and only if TE , TF and TAB are all positive. The set{
E, F B

}
is stoichiometrically admissible, while the set

{
A, B

}
is not. The assertions

in this example can be verified by direct calculations. They can also be found by
applying results developed in the sequel paper Gnacadja [7].

Definition 2.3 The conservation space of N is S⊥, the orthogonal of the stoichi-
ometric space S in RS (with respect to the Euclidean structure for which S is an
orthonormal basis). ��

In Horn and Jackson [10], a reaction network is said to be conservative if
the conservation space contains a positive vector, i.e. for the network N here, if
S⊥ ∩ R>0S 	= ∅. It is also shown that a network is conservative if and only if it has
a bounded stoichiometric compatibility class, a condition which is equivalent to all
stoichiometric compatibility classes being bounded. The relevance of S⊥ to conser-
vativeness is explained in the next section.

123



2122 J Math Chem (2011) 49:2117–2136

2.3 Kinetics and equilibria of reaction networks

A kinetics on the reaction network N = (S ,C ,R) is a family K = (K R)R∈R in
which for each R ∈ R, K R is a continuous function RS → R. Associated with a
kinetics K is the species formation function F(K ,−) = (FX (K ,−)

)
X∈S : RS →

RS given for u = (u X )X∈S ∈ RS by

F(K , u) =
∑

R∈R

K R(u)
(
tgt(R) − src(R)

) ; (2.1)

F(K , u) is the weighted sum of all reaction vectors, with the vector for a reaction
R ∈ R weighted by K R(u), which is the rate of the reaction R when the vector of
species concentrations is u.

The most common kinetics is the mass-action kinetics. It is given by a family
k = (kR)R∈R ∈ R>0R of reaction rate constants and

K R(u) = kR usrc(R) = kR

∏

X∈S

u〈src(R),X〉
X ;

we write F(K ,−) = F(k,−). For example, the mass-action species formation func-
tion of the network of Fig. 1b is given as follows.

FE (k, u) = − kE+A�E A uE u A + (kE A�E+A + kE A�E+B) uE A

FF (k, u) = − kF+B�F B uF u B + (kF B�F+B + kF B�F+A) uF B

FA(k, u) = − kE+A�E A uE u A + kE A�E+A uE A + kF B�F+A uF B

FB(k, u) = − kF+B�F B uF u B + kE A�E+B uE A + kF B�F+B uF B

FE A(k, u) = − (kE A�E+A + kE A�E+B) uE A + kE+A�E A uE u A

FF B(k, u) = − (kF B�F+A + kF B�F+B) uF B + kF+B�F B uF u B

To say that the network N is governed by the kinetics K is to say the function
c = (cX )X∈S : R≥0 → RS of time representing the concentration of the species
obeys the dynamical system

ċ(t) = F(
K , c(t)

)
. (2.2)

The function F(K ,−) ranges into the stoichiometric space S, so the solutions of Eq.
(2.2) are confined to affine subspaces of RS parallel to S. Equivalently, if c is a solu-
tion and v ∈ S⊥, then the function t �→ 〈v, c(t)〉 is conserved (i.e. constant) on R≥0.
This explains why we call S⊥ the conservation space in Definition 2.3. Under certain
conditions on the kinetics K , which are satisfied if K is a mass-action kinetics, every
solution that originates at a nonnegative state remains nonnegative, and hence is in
fact confined to a stoichiometric compatibility class.
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Consider the function F̂(K ,−) =
(
F̂Q(K ,−)

)

Q∈C
: RS → RC given for

Q ∈ C and u ∈ RS by

F̂Q(K , u) =
⎛

⎝
∑

R∈R, tgt(R)=Q

K R(u)

⎞

⎠ −
⎛

⎝
∑

R∈R, src(R)=Q

K R(u)

⎞

⎠ .

Then we have F(K , u) =
∑

Q∈C

F̂Q(K , u) Q. An equilibrium state of the network

N for the kinetics K is any u ∈ RS such that F(K , u) = 0. An equilibrium state
u ∈ RS that satisfies the stronger condition F̂(K , u) = 0 is a complex-balanced state.
The network is said to be complex-balancing if it admits a positive complex-balanced
state. It is known that a mass-action complex-balancing network must be weakly
reversible.

A trajectory originating at an equilirium state stays at that state. A major concern in
Chemical Reaction Network Theory is to understand the local and global asymptotic
stability of equilibrium states based on structural information, i.e. with no or limited
information on kinetics parameters. The persistence properties which we study in this
paper can be helpful in addressing such problems.

2.4 Pertinent elements of polyhedral geometry

The reader familiar with convex geometry will notice that a stoichiometric compati-
bility class is a (convex, possibly unbounded) polyhedron. A solid triangle and a solid
tetrahedron are examples of polyhedra (of dimension two and three respectively). The
notion of face in polyhedral geometry generalizes the notions of faces, edges and
vertices as ordinarily known for three-dimensional polyhedra. Rockafellar [13] is a
classical reference on convexity, but what is needed for stoichiometric compatibility
classes is well covered in Anderson and Shiu [2, Section 2.3]. Here we add the notion
of support of a face of a stoichiometric compatibility class. The empty set is always a
face in polyhedral geometry. In this paper however, the empty set as a face is not of
interest and a face will always be nonempty.

Let P = (u + S) ∩ R≥0S be a stoichiometric compatibility class and let A be a
face of P . We herein call intrinsic interior of A, and denote int(A), the relative interior
of A in the sense of polyhedral geometry. If A is a vertex, then int(A) = A. In partic-
ular, if 0 ∈ P , then 0 is a vertex of P and int({0}) = {0}; we set Supp({0}) = ∅. Now
suppose A 	= {0}. Then there is an (unique, nonempty) inclusion-minimal set Z ⊆ S
of species such that A = (u + S) ∩ R≥0Z . We have int(A) = (u + S) ∩ R>0Z and
we define the support of the face A to be Supp(A) = Z . So, whether or not A consists
only of the vertex 0, the intrinsic interior int(A) consists of the points of P whose
support is Supp(A). The class P is the disjoint union of the intrinsic interiors of its
faces, and the P-admissible sets (Definition 2.2) are precisely the subsets of S that
occur as supports of faces of P . We remark for the particular case A = P that the
intrinsic interior int(P) and the interior P>0 relative to u + S coincide only if P is
nondegenerate.
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Consider for illustration a reaction network with three species, rank two, and
bounded stoichiometric compatibility classes; e.g. the network with species X1, X2,
X3 and reactions 2X1 � X2, X1 + X2 � X3. Then a nondegenerate stoichiometric
compatibility class is a solid triangle, and its faces are the class itself, its three edges
and its three vertices. Such examples are easy to visualize. However they do not illus-
trate the pertinence of considering faces, which is that in general, an arbitrary set
of species need not occur as the support of a face of a nondegenerate stoichiometric
compatibility class, i.e. need not be stoichiometrically admissible (Definition 2.2). We
already noted that nonempty sets that are not stoichiometrically admissible exist for
the network of Fig. 1b. This is also the case for the network of Fig. 1a.

3 Reachability in reaction networks

In this section we discuss reachability as it pertains to reaction networks. Reachability
is an important topic in the vast mathematical field of systems theory. Sontag [17]
has a widely applicable definition of a system in Chap. 2 and an extensive discussion
of reachability in Chap. 3. Basically, reachability is concerned with the feasibility
of achieving a state of interest from another in a system through (finitely many or a
finite-time continuum of) transitions. By default, the state of a reaction network is the
vector of species concentrations. But to see our discussion of reachability in the larger
context of systems theory, the relevant notion of state is the set of species that are pres-
ent, i.e. the support of the concentrations vector. Petri nets are then the relevant class
of systems. There is abundant literature on Petri nets and a standard comprehensive
reference is Murata [11].

A reaction network N = (S ,C ,R) and a set Z ⊆ S of species are fixed
throughout this section. We begin by defining the following sets:

React(Z ) := {
R ∈ R : src(R) ⊆ Z

} ;

Prod(Z ) :=
⎧
⎪⎪⎪⎪⎪⎩

⋃

R∈React(Z )

tgt(R)

⎫
⎪⎪⎪⎪⎪⎭\ Z .

The set React(Z ) consists of the reactions that would occur if only species from Z
were present. The set Prod(Z ) consists of the species that such reactions would pro-
duce and which are not already in Z . Next we define the sets Reachr (Z ) for r ∈ Z≥0
by induction as follows:

Reach0(Z ) := Z ;

Reachr (Z ) := Prod

⎧
⎪⎪⎪⎪⎪⎩

r−1⋃

ρ=0

Reachρ(Z )

⎫
⎪⎪⎪⎪⎪⎭ , for r ∈ Z≥1.

The sets Reachr (Z ) are obtained recursively by collecting the species we do not
already have and can produce from those we already have, starting with Z . They
are pairwise disjoint. Also, if Reachr0(Z ) = ∅, then Reachr (Z ) = ∅ for all r ≥ r0.
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And because S is finite, there does exist r0 ≥ 0 such that Reachr0(Z ) = ∅. We pose:

Reach(Z ) :=
∞⊔

r=0

Reachr (Z ) ;

NonReach(Z ) := S \ Reach(Z ).

Definition 3.1

• The species in Reach(Z ) and in NonReach(Z ) are said to be reachable from Z
and non-reachable from Z respectively.

• The species in Reachr (Z ) are said to have reachability index r with respect to Z .
• The set Reach(Z ) is the reach-closure of the set Z .
• The set Z is said to be reach-closed if Reach(Z ) = Z . ��

The reach-closure Reach(Z ) consists of the species that are reachable from Z ,
i.e. the species in Z and the species that can be produced directly or indirectly with
Z . The set NonReach(Z ) consists of the species that are not in Z and can not be
produced with Z , whether directly or indirectly. Note that the full set S and the empty
set are always reach-closed. Table 1 illustrates reachability for the futile enzymatic
cycle of Fig. 1b.

Another notion from Petri net theory, that of siphon, is the subject of growing use in
reaction network theory; see for example Angeli, De Leenheer and Sontag [4], Ander-
son [1], Shiu and Sturmfels [14], and Anderson and Shiu [2]. We define siphons in
Definition 3.2 and examples can be found in the literature just cited. Propositions 3.3
and 3.4 show that there is a certain duality relationship between siphons and reach-clo-
sures. The reachability perspective has been used advantageously in Siegel and Chen
[15] and Siegel and MacLean [16].

Definition 3.2 A set W ⊆ S of species is a siphon provided(
R ∈ R and W ∩ tgt(R) 	= ∅

) ⇒ (
W ∩ src(R) 	= ∅

)
. ��

This definition says that the set W is a siphon if whenever a reaction has elements
of W among the species it produces, it also has elements of W among the species
it consumes. The full set S and the empty set are siphons. Siphons are sometimes

Table 1 Selected reachability concepts for the network of Fig. 1b

Z
{

E A, F
} {

E, A
} {

A, B
}

Reach0(Z )
{

E A, F
} {

E, A
} {

A, B
}

Reach1(Z )
{

E, A, B
} {

E A
}

∅

Reach2(Z )
{

F B
} {

B
}

∅

Reach3(Z ) ∅ ∅ ∅

Reach(Z )
{

E, F, A, B, E A, F B
} {

E, A, B, E A
} {

A, B
}

NonReach(Z ) ∅

{
F, F B

} {
E, F, E A, F B

}

The set
{

A, B
}

is reach-closed. The set
{

E A, F
}

has full reach closure. The set
{

E, A
}

lies between these
two limit cases
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required to be nonempty by definition. Here, when we need a siphon to be nonempty,
we explicitly say so.

Proposition 3.3 The complement NonReach(Z ) of the reach-closure of Z is a
siphon.

Proof For any reaction R ∈ R, we have:

NonReach(Z ) ∩ src(R) = ∅ ⇔ src(R) ⊆ Reach(Z )

⇒ tgt(R) ⊆ Reach(Z )

⇔ NonReach(Z ) ∩ tgt(R) = ∅ .

��
Proposition 3.4 The set Z is reach-closed if and only if its complement S \ Z is a
siphon.

Proof

(
S \ Z is a siphon

)

⇔
(

(
R ∈ R and (S \ Z ) ∩ src(R) = ∅

) ⇒ (
(S \ Z ) ∩ tgt(R) = ∅

)
)

⇔
((

R ∈ R and src(R) ⊆ Z
) ⇒ (

tgt(R) ⊆ Z
))

⇔
⋃

R∈React(Z )

tgt(R) ⊆ Z

⇔ Prod(Z ) = ∅

⇔ Reach(Z ) = Z .

��
Propositions 3.3 and 3.4 immediately imply the following result, which is already

intuitively clear.

Proposition 3.5 The reach-closure Reach(Z ) of Z is reach-closed;
Reach

(
Reach(Z )

) = Reach(Z ). ��
Moreover, Reach(Z ) is the inclusion-minimal subset of S that contains Z and is

reach-closed. In particular, if Z ′ ⊆ Reach(Z ), then Reach(Z ′) ⊆ Reach(Z ). This
expresses a transitivity feature of reachability: For X ∈ S and Z ′ ⊆ S , if X is reach-
able from Z ′, and if all elements of Z ′ are reachable from Z , then X is reachable
from Z .

For u ∈ R≥0S , we set

Reach(u) := Reach
(
Supp(u)

)
,

NonReach(u) := NonReach
(
Supp(u)

)
.
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4 The theorem of A. I. Vol’pert on the positivity and nullity of species
concentrations

Vol’pert [22] has studied the question of when the solutions of certain dynamical sys-
tems have components that remain zero while the other components become and
remain positive. The theory is developed for differential equations on graphs, of
which mass-action kinetics dynamical systems are instances. The work is revisited in
Vasil’ev, Vol’pert and Khudyaev [20] (with an erratum in [21]). The more recent book
of Vol’pert and Hudjaev [23] covers the topic in Chap. 12. In this section, we present
this work in a form specialized to chemical reaction networks and with a view toward
showing in Sect. 5 how it contributes to results on persistence.

Let N = (S ,C ,R) be a reaction network. Suppose N is governed by mass-
action kinetics and let k = (kR)R∈R be the family of reaction rate constants. We set
F = F(k,−) for the species formation function. Associated with the dynamical sys-
tem ċ(t) = F(c(t)) is the evolution semigroup C : R≥0S × R≥0 → R≥0S . Thus,
C is continuous; for every u ∈ R≥0S , the map R≥0 → R≥0S , t �→ C(u, t) is the
concentration trajectory originating at u; and for all u ∈ R≥0S and t, t ′ ∈ R≥0, we
have C(u, t + t ′) = C

(
C(u, t), t ′

)
.

Theorem 4.1 (A. I. Vol’pert) Let c = (cX )X∈S : R≥0 → RS be a concentration
trajectory with c(0) ∈ R≥0S . Let X ∈ S be a species.

• If X ∈ NonReach
(
c(0)

)
, then cX (t) = 0 for all t ≥ 0; and

• If X ∈ Reach
(
c(0)

)
, then cX (t) > 0 for all t > 0.

Hence, we have Supp
(
c(t)

) = Reach
(
c(0)

)
for all t > 0.

The work of Vol’pert provides additional information on trajectories. In particular,
it says that if a species X is reachable from Supp

(
c(0)

)
with reachability index r ,

then the following holds for the derivatives at t = 0 of order up to r of the trajectory
component cX .

c(ρ)
X (0) = 0 for ρ = 0, . . . , r − 1 and c(r)

X (0) > 0.

cX (t) = 1

r ! c(r)
X (0) tr + O

(
tr+1) as t → 0, t > 0.

Thus, if two species X ′ and X ′′ have reachability index r ′ and r ′′ with r ′ < r ′′, then
there exists t0 > 0 such that 0 < cX ′′(t) < cX ′(t) if 0 < t < t0. This says that the
higher the reachability index, the slower a species starts to appear.

We present a proof of Theorem 4.1 in “Appendix” section. We focus here on
its implications. A stoichiometric compatibility class P is fixed for the rest of this
section.

Recalling the notion of admissibility from Definition 2.2, the following result is a
straightforward observation from Theorem 4.1.

Proposition 4.2 If a set Z ⊆ S of species is P-admissible (resp. stoichiometrically
admissible), then so is its reach-closure Reach(Z ). ��
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The converse of Proposition 4.2 is not true: there may be sets that are not P-admis-
sible and are reach-closed. For example, for the network of Fig. 1b, the set

{
A, B

}
is

not stoichiometrically admissible (see Sect. 2.2) but is reach-closed (see Table 1).
We define

�(P) := {
u ∈ P : Supp(u) is reach-closed

}
. (4.1)

The set S is reach-closed and is the support of positive vectors, so

P>0 ⊆ �(P) ⊆ P. (4.2)

The combination of Theorem 4.1 and Proposition 3.5 readily gives:

Proposition 4.3 For any concentration trajectory c : R≥0 → P, we have c(t)∈�(P)

for all t > 0; only the initial point c(0) may (but need not) be in the subset P \ �(P)

of the boundary P	>0. ��
Vol’pert’s Theorem also leads to certain properties of the faces of stoichiometric

compatibility classes.

Proposition 4.4 Let A be a face of P. The following are equivalent:

(i) The intrinsic interior int(A) of A contains a trajectory.
(ii) The support Supp(A) of A is reach-closed.

(iii) The intrinsic interior int(A) of A is forward-invariant.
(iv) The face A is forward-invariant.

If these conditions are satisfied and if A is bounded, then A contains an equilibrium
state.

Refer to the discussion on polyhedral geometry in Sect. 2.4 for the notions of face
and of intrinsic interior and support of a face. The implication (i)⇒(iv) can be obtained
by using an unpublished result of Sontag [19] in the more general context of dynamical
systems on manifolds with boundary.

Proof If a trajectory c ranges in int(A), then all the points along c have Supp(A)

as their support. So we get the implication (i)⇒(ii) from Proposition 4.3. We have
(ii)⇒(iii) by Theorem 4.1. The implication (iii)⇒(i) is trivial. We have (iii)⇒(iv) by
the continuity of the evolution semi-group C and because A is the topological closure
of int(A). We have (iv)⇒(iii) because Theorem 4.1 shows that the support along a
trajectory cannot get inclusion-smaller. Now suppose that A is forward-invariant and
bounded. Then A is convex, compact and forward-invariant. As a result, A contains
an equilibrium state. ��

Recall that a point z ∈ R≥0S is an equilibrium state if F(z) = 0. This is equiv-
alent to the condition that C(z, t) = z for all t ∈ R≥0. We denote �(P) the set
of equilibrium states in P . A point z ∈ R≥0S is an ω-limit point of a point
u ∈ R≥0S provided there exists a sequence (tn)n≥0 in R≥0 such that lim

n→∞ tn = ∞ and

123



J Math Chem (2011) 49:2117–2136 2129

lim
n→∞ C(u, tn) = z. We denote ω(u) the set of ω-limit points of u. And for U ⊆ R≥0S ,

we set ω(U ) =
⋃

u∈U
ω(u). Note that, while ω(u) is the ω-limit set of the point u,

ω(U ) is a (possibly proper) subset of the ω-limit set of the set U . Evidently, every
equilibrium point is an ω-limit point (of itself):

�(P) ⊆ ω(P) ⊆ P.

It is possible to have �(P) = ω(P). Sontag [18, Theorem 1] has proved that this
holds when the network is weakly reversible and the number of complexes exceeds
the rank by precisely one. Also, this is trivially the case if the class P contains a point
which is a global attractor.

Proposition 4.5

• We have �(P) ⊆ �(P); the support of any equilibrium state in P is reach-closed.
• If all trajectories in P are bounded, then ω(P) ⊆ �(P); the support of any ω-limit

point of any point of P is reach-closed.

The assertions in Proposition 4.5 have already been established through other
means. The property that equilibrium states have reach-closed support is an earlier
result of Feinberg [6, Proposition 5.3.1]. The fact that the ω-limit points of any u ∈ P
have reach-closed supports is proved by Angeli, De Leenheer and Sontag [4, Propo-
sition 5.4], and also by Anderson [1, Theorem 2.5] for u ∈ P>0. The first of the
two assertions in Lemma 2.8 of this latter reference is the containment relationship
P	>0 ∩ �(P) ⊆ P	>0 ∩ �(P) for weakly reversible deficiency-zero networks.

Proof Let z ∈ P and t > 0. By Proposition 4.3, we have C(z, t) ∈ �(P). If z ∈ �(P),
then C(z, t) = z, and so z ∈ �(P). The inclusion �(P) ⊆ �(P) is thus proved. For
the inclusion ω(P) ⊆ �(P), the key idea is that when trajectories in P are bounded,
the ω-limit set ω(u) of any u ∈ P is backward-invariant (in addition to being for-
ward-invariant unconditionally). The details are as follows. Suppose that trajectories
in P are bounded and let u ∈ P and z ∈ ω(u). Let t0 > 0. There exists a sequence
(tn)n≥0 in R≥0 such that tn ≥ t0 for all n ≥ 0, lim

n→∞ tn = ∞, and lim
n→∞ C(u, tn) = z.

We have in P the sequence (C(u, tn − t0))n≥0. This sequence is bounded and P is
a closed set, so there exists a sequence (nk)k≥0 in Z≥0 such that lim

k→∞ nk = ∞ and

z0 = lim
k→∞ C(u, tnk − t0) exists in P . We then have

C
(
z0, t0

) = lim
k→∞ C

(
C(u, tnk − t0), t0

) = lim
k→∞ C

(
u, tnk

) = z.

Then, by Proposition 4.3, Supp(z) is reach-closed.

The condition that all trajectories in P be bounded is of course satisfied if the class
P is bounded. The condition is also satisfied if the network is complex-balanced and
the class P is nondegenerate. Siegel and MacLean [16, Lemma 3.5] have derived this
from the fact that the canonical Lyapunov function decreases along trajectories.
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5 Vacuous persistence

We now study persistence using the work of Vol’pert and its consequences discussed
in Sect. 4. Some of the results we obtain have equivalent formulations in various ref-
erences which we indicate in each case. For these, our contribution is to show how
they derive from Vol’pert’s Theorem. The main result in this section is Theorem 5.5.
It provides a necessary and sufficient condition for vacuous persistence, essentially
the complete absence of boundary ω-limit points where the boundary is not all there
is. A mass-action reaction network N = (S ,C ,R) is fixed for this section.

Definition 5.1 The reaction network is persistent (resp. vacuously persistent) if we
have ω(P>0) ⊆ P>0 (resp. ω(P) ⊆ P>0) for every nondegenerate stoichiometric
compatibility class P . ��

Persistence is studied in other areas of mathematics; see for example the discussion
in Angeli, De Leenheer and Sontag [4, Section 1.2]. In a persistent reaction network, if
all species are present at initial time, then no species approach extinction as time tends
to infinity continuously or discretely. In a vacuously persistent reaction network, this
asymptotic property holds even if not all species are present at initial time, as long as
the stoichiometric compatibility class, by being nondegenerate, allows for the presence
of all species. Ordinary persistence can occur with ‘opportunities for non-persistence’,
whereby we mean boundary points that are ω-limit points, but only for trajectories
confined to the boundary. The qualifier ‘vacuous’ is to indicate the absence of such
opportunities. Vacuous persistence is relevant to biochemical experimental settings in
which some species may not be initially present.

Persistence is not only important in and of itself, it also affects global asymptotic
stability. For instance, it results from Siegel and MacLean [16, Theorem 3.2] that if a
mass-action reaction network is persistent and complex-balancing, then each nonde-
generate class P contains a unique equilibrium state which is complex-balanced and is
an attractor of P>0. Extending this fact, we note that with vacuous persistence instead,
the equilibrium state is an attractor of P . Efforts to understand the persistence of com-
plex-balanced networks with global asymptotic stability as the motivation include
Siegel and Chen [15], Siegel and MacLean [16], Anderson [1], and Anderson and
Shiu [2]. The work of Angeli, De Leenheer and Sontag [4] is on persistence as an
inherently important property and on approaches to study it through Petri nets. The
earlier work of Feinberg [6, Sections 5 and 6] discusses persistence and many of the
related ideas in a direct fashion. In particular, Remark 6.1.E in this reference con-
solidates the topic and includes the conjecture that weakly reversible networks are
persistent.

It is easy to see that vacuous persistence is equivalent to persistence together with
the non-existence of trajectories entirely contained in the boundary of nondegenerate
stoichiometric compatibility classes. Condition (iii) in Proposition 5.2 provides an
even simpler characterization.

Proposition 5.2 (Sontag [19]) Suppose that stoichiometric compatibility classes are
bounded. Then the following are equivalent:

(i) The reaction network is vacuously persistent.
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(ii) The reaction network is persistent and there are no trajectories on the boundary
of nondegenerate stoichiometric compatibility classes.

(iii) The reaction network is persistent and there are no equilibrium points on the
boundary of nondegenerate stoichiometric compatibility classes.

Proof We already noted the equivalence of conditions (i) and (ii). We trivially have
(ii)⇒(iii). We obtain (iii)⇒(ii) by contraposition with Proposition 4.4. ��

We now proceed through the steps leading to the main theorem of this section. Let
P be a stoichiometric compatibility class.

Lemma 5.3 The set P	>0 ∩ �(P) of boundary points with reach-closed support is
forward-invariant and ω

(
P	>0 ∩ �(P)

) ⊆ P	>0.

Proof Let u ∈ P	>0 ∩ �(P) and t ≥ 0. The support of u is reach-closed, so
Supp

(
C(u, t)

) = Supp(u) by Vol’pert’s Theorem 4.1. Therefore, we have C(u, t) ∈
P	>0 ∩ �(P). Hence, P	>0 ∩ �(P) is forward-invariant. It then follows that
ω

(
P	>0∩�(P)

) ⊆ P	>0 because the boundary P	>0 is a closed set. ��
Theorem 5.4 Suppose that all the trajectories in the stoichiometric compatibility
class P are bounded. Then the following conditions are equivalent:

(i) ω(P) ⊆ P>0; in P, all ω-limit points are positive.
(ii) �(P) = P>0; in P, only the positive points have reach-closed support.

(iii) Only the entire set S of species is both reach-closed and P-admissible.
(iv) We have Reach(Z ) = S for every P-admissible set Z ⊆ S .

The second of the two assertions in Anderson [1, Lemma 2.8] is the implication(
�(P) ⊆ P>0

) ⇒ (iii) for weakly reversible deficiency-zero networks.

Proof Condition (iii) is just another formulation of condition (ii).

Proof that (i)⇒(ii). Assume ω(P) ⊆ P>0. Then in particular
ω

(
P	>0 ∩ �(P)

) ⊆ P>0. But by Lemma 5.3, ω
(
P	>0 ∩ �(P)

) ⊆ P	>0. Therefore,
ω

(
P	>0 ∩ �(P)

) = ∅. Trajectories in P have ω-limit points because they are bounded.
So necessarily, P	>0 ∩ �(P) = ∅, i.e. �(P) ⊆ P>0. We noted in Eq. (4.2) that
P>0 ⊆ �(P). So �(P) = P>0.

Proof that (iii)⇒(i). Assume that property (iii) holds. Let u ∈ ω(P). Then Supp(u) is
P-admissible, and by Proposition 4.5, is also reach-closed. Therefore, Supp(u) = S ,
i.e. u ∈ P>0.

Proof that (iii)⇒(iv). Assume (iii). Suppose that Z ⊆ S is P-admissible. Then the
set Reach(Z ) is P-admissible and reach-closed by Proposititions 4.2 and 3.5 respec-
tively. Therefore, Reach(Z ) = S .

Proof that (iv)⇒(iii). Assume (iv). Suppose that Z is both reach-closed and P-admis-
sible. We have Reach(Z ) = S because Z is P-admissible, and Reach(Z ) = Z
because Z is reach-closed. So Z = S . ��

We now obtain the final and main result of this paper as an immediate corollary of
Theorem 5.4.
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Theorem 5.5 Suppose that all trajectories are bounded. Then the following are equiv-
alent:

• The reaction network is vacuously persistent.
• Among the subsets of the set S of all species, only the full set S is both reach-

closed and stoichiometrically admissible. ��
We note that the recent work of Peter and Dittrich [12] bears a resemblance with

ours in terms of the concerns and the methods. In this paper, an ‘organization’ is a set of
species that is ‘closed’ and ‘self-maintaining’, and the relation between organizations
and ω-limit points is investigated.

We illustrate Theorem 5.5 with two small examples.
First, consider the reaction network with species X1, X2, X3 and reactions

2X1 � X2, X1 + X2 � X3. (We already used this network in Sect. 2.4.) The eight
nonempty subsets of species have full reach closure; it is enough to verify this for
the three singleton subsets. So the seven nonempty nonfull subsets of species are
not reach-closed. On another hand, the empty set is not stoichiometrically admissible
because the nondegenerate stoichiometric compatibility classes, which are solid tri-
angles in three-dimensional space, do not contain the origin. Hence, only the full set
is both reach-closed and stoichiometrically admissible. By Theorem 5.5, the network
is vacuously persistent.

Second, consider the following reaction network.

2A + B �� C

��
D

��

A + 2B��

Let Z = {A}. The set Z is reach-closed because no reactions can occur if only
A is present. It is also stoichiometrically admissible because, with u = 8A and
v = A + B + C + D, we have Supp(u) = Z , v has full support, and u and v are
stoichiometrically compatible because

u − v = (
C − (2A + B)

) + 2
(
(A + 2B) − C

)

+ 5
(
D − (A + 2B)

) + 6
(
(2A + B) − D

)
.

Hence the set Z is non-full, is reach-closed and is stoichiometrically admissible. By
Theorem 5.5, this network is not vacuously persistent. However, it is shown in Angeli,
De Leenheer and Sontag [3, Section 10] that it is persistent.

The larger the number of species, the more challenging it can be to directly apply
Theorem 5.5 because of the exponentially growing number of subsets. In two sequel
papers, we pursue additional mathematical investigations and arrive at two large classes
of networks that are vacuously persistent and are actually used as models of biochem-
ical interactions. The networks of Fig. 1a, b are instances of the classes of networks
we study in Gnacadja [7,8] respectively.

123



J Math Chem (2011) 49:2117–2136 2133

6 Conclusion

We have provided a structural necessary and sufficient condition for a mass-action
reaction network with bounded trajectories to have vacuous persistence, a strict form
of persistence which takes into account nondegenerate trajectories that are not consid-
ered in ordinary persistence. The fact that there is a necessary and sufficient condition
for vacuous persistence based on network structure alone could be viewed as an indi-
cation that this is the natural way to think about the persistence of reaction networks.
We employed the work of Vol’pert which we hope will gain more awareness in the
Chemical Reaction Network Theory community. This paper is the first in a series of
three articles on persistence. The two sequel papers develop additional formalisms of
independent interest: the second paper on species composition and the third paper on
binary enzymatic networks. In each case, the new formalism is used to present a large
class of biochemically valid networks that are vacuously persistent.

Acknowledgments This paper benefited from the comments the author received from Eduardo Sontag,
Martin Feinberg, Anne Shiu and the anonymous reviewers.

7 Appendix: Proof of A. I. Vol’pert’s Theorem 4.1

This section is devoted to proving Vol’pert’s Theorem 4.1. We begin with a few pre-
paratory steps. First, we note that if a trajectory originates at a nonnegative state, then
it remains nonnegative. This is a well-known fact with several proofs in the literature,
including the work of Vol’pert. Second, we record the following elementary fact of
calculus for convenient subsequent reference.

Lemma 7.1 Let I ⊆ R be an interval and letα : I → R andβ : I → R be continuous

functions. Consider the C1-function A : I × I → R given by A(t0, t) =
t∫

t0

α(τ)dτ . A

function x : I → R satisfies ẋ(t)=α(t) x(t)+β(t) if and only if x(t)=eA(t0,t)x(t0)+
t∫

t0

eA(τ,t)β(τ )dτ . ��

The third and final preparation step is to note certain alternate expressions of the
species formation function. For any species X ∈ S and any reaction R ∈ R, let
σ(R, X) = 〈X, tgt(R) − src(R)〉. Then the species formation function F of Eq. (2.1)
is given by

FX (u) =
∑

R∈R, src(R)∪tgt(R) � X

σ(R, X) kR usrc(R) . (7.1)

Let Z be a siphon. For any reaction R ∈ R such that
Z ∩ (

src(R) ∪ tgt(R)
) 	= ∅, we in fact have Z ∩ src(R) 	= ∅. Consider then a

selected species ν(R) ∈ Z ∩ src(R). Then there is a (unique) monomial function
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μR on RS such that usrc(R) = μR(u) uν(R). It follows that for X ∈ Z , Eq. (7.1)
becomes

FX (u) =
∑

R∈R, src(R)∪tgt(R) � X

σ(R, X) kR μR(u) uν(R) . (7.2)

On another hand, consider for any species X ∈ S the polynomial functions gX and
h X on RS given by

gX (u) u X =
∑

R∈R,σ (R,X)<0

|σ(R, X)| kR usrc(R) ;

h X (u) =
∑

R∈R,σ (R,X)>0

σ(R, X) kR usrc(R) .

They give rise to another relevant form of Eq. (7.1):

FX (u) = −gX (u) u X + h X (u) . (7.3)

We are now ready for the announced proof.

Proof (Proof of A. I. Vol’pert’s Theorem 4.1) Recall from Proposition 3.3 that
Z := NonReach

(
c(0)

)
is a siphon. Therefore, thanks to Eq. (7.2), we may consider

the system of differential equations

v̇X (t) =
∑

R∈R, src(R)∪tgt(R) � X

σ(R, X) kR μR(c(t)) vν(R)(t) (7.4)

for v = (vX )X∈Z : R≥0 → RZ . We impose the initial condition v(0) = 0. Then the
zero function is a solution. It results from Eq. (7.2) that the function t �→ (

cX (t)
)

X∈Z
is also a solution. Therefore cX is identically zero for all X ∈ Z .

Now let X be any species and let G X,c(t0, t) =
t∫

t0

gX
(
c(τ )

)
dτ . With Eq. (7.3) and

Lemma 7.1, we get

cX (t) = e−G X,c(0,t)cX (0) +
t∫

0

e−G X,c(τ,t)h X
(
c(τ )

)
dτ .

We have c(τ ) ≥ 0 for all τ ≥ 0, so cX (t) ≥ e−G X,c(0,t)cX (0) for all t ≥ 0. Therefore,
if X ∈ Supp

(
c(0)

)
, then cX (t) > 0 for all t ≥ 0.

Let r ∈ Z≥1 and assume for induction that if X has reachability index < r , then
cX (t) > 0 for all t > 0. Suppose that X has reachability index r . Then there exists
a reaction R ∈ R such that X ∈ tgt(R) and all species in src(R) have reach-
ability index < r ; in particular, X /∈ src(R). Because X /∈ src(R) and X ∈ tgt(R),
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we have σ(R, X) > 0. Plus, as noted earlier, we have c(τ ) ≥ 0 for all τ ≥ 0. There-
fore, h X

(
c(τ )

) ≥ σ(R, X) kR
(
c(τ )

)src(R) for all τ ≥ 0. Because all species in src(R)

have reachability index < r , the induction hypothesis implies that
(
c(τ )

)src(R)
> 0 for

all τ > 0. Therefore, h X
(
c(τ )

)
> 0 for all τ > 0. As a result, cX (t) > 0 for all t > 0.

��
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